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Abstract

We investigate the impact of firm capacity constraints on aggregate production and

productivity when the economy is driven by aggregate and idiosyncratic demand shocks.

We are motivated by three observed regularities in US data: business cycles are asym-

metric, in that large absolute changes in output are more likely to be negative than

positive; capacity and capital utilization are procyclical, and increase the procyclicality

of measured productivity; the dispersion of firm productivity increases in recessions.

We devise a model of demand shocks and endogenous capacity constraints that

is qualitatively consistent with these observations. We then calibrate the model to

aggregate utilization data using standard Bayesian techniques. Quantitatively, we find

that the calibrated model also exhibits significant asymmetry in output, on the order

of the regularities observed in GDP.
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1 Introduction

Despite their (surprising) symmetry, two very asymmetric patterns have been observed in

business cycles. First, big booms occur less often than big busts, that is, large absolute

changes in output are more likely to be negative than positive. Second, firm productivity

becomes more dispersed in recessions, and the productivity of the worst firms decreases

relative to the mean (Kehrig (2011)).

We believe these patterns are closely related to the way firms change the intensity of

their production processes over the business cycle. Capacity utilization, or the percentage

of potential output that firms produce, seems to be procyclical, as does capital utilization,

or the intensity with which firm use their machinery. It has also been noted that, even

though average productivity is apparently procyclical, this is no longer the case when we

take the changes in capacity utilization into account (Basu et al. (2006)).

In this paper, we propose a theory involving heterogeneous firms facing costs to utiliz-

ing previously installed capital. The costs endogenously constrain the capacity each firm

utilizes, and these constraints change with economic conditions. We investigate the impact

of these capacity constraints on aggregate production and productivity when the economy

is driven by aggregate and idiosyncratic demand shocks. We devise a model of demand

shocks and endogenous capacity constraints that is qualitatively consistent with these ob-

servations. We then use the mentioned stylized facts in combination with data on firms’

input utilization rates in order to learn about the relevance of demand shocks for aggregate

fluctuations. To assess this, we estimate the model using micro data and standard Bayesian

techniques. We then compare to which extent it replicates the described stylized facts. We

find that for our preferred calibration, the model exhibits asymmetry on the order of what

we observe in the data.

Capacity utilization, and its relationship to business cycles, has been the subject of

a long strand of research in macroeconomics. Hansen and Prescott (2005), motivated by

the observation that many firms typically have idle capacity, construct a model in which a

representative firm chooses capacity one period ahead, and finds that business cycles in such

a model are asymmetric. Gilchrist and Williams (2005) investigate the use of ”putty-clay”

technology by firms, in which firms freely choose their capital a period in advance, and can
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only utilize that capital during production. They focus on the construction of a tractable

aggregate production function, and find that business cycles are asymmetric as well. The

model in this paper is closely related to this work.

This paper proceeds as follows. In the next section, we document our three stylized facts.

Next, we propose our model, and discuss its important properties. In the next section, we

estimate the key parameters of our model, simulate the model using these parameters, and

discuss its quantitative performance. The last section concludes.

2 Three stylized facts relating to asymmetry of business cy-

cles

Large deviations from trend in output are more likely to be negative The ques-

tion whether business cycles are asymmetric is fairly old. As noted by McKay and Reis

(2008), Mitchell (1927) characterized recessions as briefer and more violent than expan-

sions. Starting with Neftci (1984) as well as DeLong and Summers, a large literature has

investigated this question using more formal econometric techniques.

In general, results in the literature are mixed. Neftci (1984) finds evidence for asymme-

try between increases and decreases of the US unemployment rate estimating an underlying

Markov model. DeLong and Summers (1986) test skewness coefficients of output and em-

ployment data for the US and other industrialized countries. They do not find significant

skewness in growth rates of output, nor significant differences in the length of expansions

and contractions in output. Hamilton (1989) extends Neftci’s work and estimates a two-

state Markov process for output in which the recessionary and expansionary states have

significantly different properties, a finding confirmed by later papers using similar method-

ology (Clements and Krolzig (2003), Hamilton (2005)). Sichel (1993) takes up DeLong and

Summers (1986) nonparametric approach by looking at deepness of contractions and finds

evidence of negative skew in levels of output and employment. Bai and Ng (2005) derive

limiting distributions for coefficients of skewness and kurtosis under serial correlation and

cannot reject the null of zero skew in US output growth rates. After nonparametrically

estimated business cycle turning points, McKay and Reis (2008) compare average duration
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and growth during expansions and recessions, and do not find significant evidence that

recessions are shorter or more violent.

These findings suggest to us that one should be specific in defining which aspect of

potential asymmetry one is looking at, a point also made by McKay and Reis (2008). Our

general reading of the literature is as follows: Evidence for skewness in output growth rates,

which seem to be considered in most papers, is largely absent. There is some evidence for

skewness in output levels. (Along both dimensions, employment seems to exhibit stronger

asymmetry than output.) Additionally, for hidden-state Markov models, non-linear param-

eterizations fit the data significantly better than linear ones.

Our focus is on the claim that large cyclical swings in output are more likely to be

negative than positive — in other words, production will spend more time far below trend

than far above. This is related to negative skewness of output levels, for which there is

some evidence (Sichel (1993)).

We now report some additional observations about the largest absolute deviations of

the cyclical component of output. To this purpose, we take a measure of US production,

detrend it, and then look at the largest observations of the detrended series in absolute

value. Specifically, for some integer N we count in how many of the N periods of largest

absolute deviations output was above trend vs below trend. We also compare the mean

of the N/2 most positive deviations to the N/2 most negative deviations. Finally, we also

compute the coefficient of skewness for the detrended series as a whole (so that this statistic

is independent of N). We repeat this process for a number of different specifications, where

a specification consists of a measure of output, a time span, a trend filter, and an integer

N .

We report results in table 1. Our baseline cases use HP-filtered postwar data and often

constitutes the weakest case in terms of differences between expansions and recessions since

the HP filter tends to attribute parts of the cyclical movement into the trend at the edges

of the sample. For almost all specifications we find that large deviations from trend tend

to be negative.

The following discussion of the other two stylized facts is shorter, mainly because the

evidence is not as mixed.
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Table 1: Strong recessions more severe than strong expansions

Specification # pos vs neg mean pos vs neg skewness

Quarterly GDP

Baseline 16 vs 24 2.78% vs −3.68% −0.60
N = 20 6 vs 14 3.12% vs −4.33% −0.60
N = 80 40 vs 40 2.28% vs −2.87% −0.60
until 2007 17 vs 23 2.28% vs −2.87% −0.62
Linear filter 6 vs 34 7.99% vs −12.70% −0.81
Rotemberg filter 6 vs 34 4.19% vs −5.68% −0.33
Rotemberg filter, N = 80 29 vs 51 3.74% vs −5.14% −0.33

Annual GDP

Baseline 3 vs 7 3.20% vs −4.40% −0.35
N = 6 0 vs 6 3.37% vs −4.83% −0.35
N = 20 13 vs 7 2.99% vs −3.55% −0.35
until 2007 4 vs 6 2.99% vs −3.55% −0.35
from 1929 6 vs 4 16.69% vs −11.61% +1.00
Linear filter 2 vs 8 7.29% vs −12.51% −0.88
Linear filter from 1929 3 vs 7 20.50% vs −31.08% −0.91
Rotemberg filter 1 vs 9 6.23% vs −13.50% −0.87
Rotemberg filter from 1929 1 vs 9 16.15% vs −36.95% −1.22

Monthly industrial production

Baseline 50 vs 70 4.52% vs −5.90% −0.65
N = 40 7 vs 33 5.48% vs −7.57% −0.65
N = 240 124 vs 116 3.71% vs −4.45% −0.65
until 2007 56 vs 64 4.39% vs −5.58% −0.65
from 1919 54 vs 66 11.35% vs −13.59% −0.55
Linear filter 33 vs 87 17.03% vs −22.69% −0.52
Rotemberg filter 46 vs 74 7.47% vs −11.23% −0.62

“# pos vs neg”: Out of the N periods with largest absolute value, how many were
positive and how many were negative. “mean pos vs neg”: Mean of the N/2 largest
periods vs mean of the N/2 smallest periods. “Skewness”: Coefficient of skewness
defined as E

[
(x− µ)3/σ3

]
.

For all three series in the baseline, N correspons to a little less than 1/6 of observations,
series were HP filtered and starting date is January 1949. “Quarterly GDP”: N = 40,
end date 2014 : 4, HP(1600)-filtered. “Annual GDP”: N = 10, end date 2013, HP(400)-
filtered. “Monthly industrial production”: N = 120, end date 2014/02, HP(10, 000)-
filtered. Alternative specifications differ from respective baseline only along listed di-
mensions.
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Figure 1: GDP and TFP measures
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Fernald (2012).

Simple TFP estimates are procyclical, but not so if corrected for utilization For

this stylized fact we draw on Basu et al. (2006) and Basu et al. (2009) who discuss ways to

improve the measurement of firm productivity. In particular, they construct a measure for

aggregate technology that accounts for potential confounding influences of returns to scale,

imperfect competition, aggregation across sectors and, especially relevant for us, utilization

rates of factor inputs. Figure 1 displays annual output growth together with changes in

a simple measure of TFP (the Solow Residual) as well as Basu, Fernald and Kimball’s

‘purified’ measure. The simple productivity measure is strongly procyclical: Correlation

between output growth and simple TFP is 0.74. The improved technology measure does

not exhibit this association with aggregate production; in fact purified TFP appears to be

almost completely acyclical as its correlation with (contemporary) output growth is 0.02.

Since the mechanism we consider hinges strongly on the effect of adjustment in factor

input utilization, we recalculate the mentioned coefficients of correlation using data provided

by John Fernald1 (see Fernald (2012)). This dataset provides among other things a TFP

measure that only corrects for intensity of capital and labor utilization, allowing us to

check if utilization is indeed relevant for the difference in cyclicality between the simple and

1Data available at www.frbsf.org/economic-research/economists/jfernald/quarterly tfp.xls
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the purified productivity measure (or if instead the difference stems mainly from the other

‘purifying’ steps taken by Basu, Fernald and Kimball). Additionally, it spans 15 more years

at the end of the sample. Again, simple TFP is strongly procyclical with a correlation of

0.83 whereas utilization-corrected TFP is acyclical with a coefficient of −0.03.

Dispersion of firm productivity increases in recessions Our third fact is connected

to a range of findings in the literature that relate recessions to increased cross-sectional

dispersion among firms along several dimensions. Eisfeldt and Rampini (2006) show that

capital productivity is more dispersed in recessions. Bloom (2009) and Bloom et al. (2012)

show in seminal papers that shocks to the variance of firm productivity can cause drops in

output; they include empirical evidence relating dispersion in sales growth, innovations to

plant profitability, and sectoral output to times of low aggregate production.

Directly related to levels of firm productivity, Kehrig (2011) finds that the distribution

of plant revenue productivity becomes wider in recessions; Bachmann and Bayer (2011)

reach a similar result for innovations to the Solow residual in a dataset of German firms.

3 Model

We construct a simple monopolistic competition model in which a final good is produced

with a variety of intermediate inputs. Each of the intermediate input producers must choose

the price of their good and their capital capacity one period ahead of when they decide to

produce. At the time of production, these firms are free to choose their labor input and

utilized capital input. A convex cost of capital utilization ensures that firms choose interior

values for their utilization rates.

This is a partial equilibrium model, in which wages, rental rates and, importantly,

demand functions are independent of the outcomes in the intermediate goods sector.2 Im-

portantly, this shuts down an interaction between binding constraints on intermediate goods

firms and aggregate demand: An increasing share of constrained intermediate goods pro-

ducers will potentially increase demand for other, non-constrained firms’ goods and will

2This setup could, for example, be rationalized as part of a general equilibrium in which there is a global
final goods aggregator, a global household, and the intermediate goods sector represents a country’s firms
that jointly have mass 0 in final goods production.
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also lower final goods production. Both these effects can have feedback effects on the share

of constrained firms and thus deprive the Dixit-Stiglitz solution of its usual simplicity. For

this reason we leave generalization to general equilibrium for future work.

3.1 Final Goods Firms

There is a competitive sector of final goods producers which acts as a CES aggregator,

that is, production of final goods Yt requires purchasing a basket of intermediate inputs

of differing varieties
{
ydit
}
i

at prices {pit}i. Each final goods firm’s production function is

given by

Yt =

[∫
(Atbit)

1
σ yit

σ−1
σ di

] σ
σ−1

(1)

where σ is the (constant) elasticity of substitution between inputs. At and bit are

random (AR(1)) aggregate and variety-specific final good technology shocks, respectively.

We will alternatively refer to these as ”demand shocks” throughout the remainder of the

paper. Under the assumption that bit is lognormally distributed, which we will maintain

throughout the paper, the aggregate shock At just shifts the mean of bit.

As will be made clear below, because of capital utilization costs, intermediate goods

firms will not be willing to supply more than a (variety specific) quantity yCit . Also, the

price of final goods is normalized to 1. Thus, in each period t, final goods firms solve

max
(yit)i

Yt −
∫
i
pityitdi

Define the expenditure for varieties It =
∫
i(Atbit)

1
σ pityitdi, and price index P 1−σ

t =∫
i(Atbit)

1−σ
σ p1−σit di. Then

ydit = Atbit
It
Pt

(
Pt
pit

)σ
3.2 Intermediate Goods Firms

Intermediate goods producers transform capital and labor supplied by households into dif-

ferentiated products that can be used as inputs by the final goods sector. Each producer
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monopolistically supplies a single variety.

We depart from the standard model in three ways. First, each intermediate goods

firm chooses the price of its variety one period in advance. Second, also one period in

advance, each firm invests some of its earnings (in units of final goods) as installed capital

for production in the next period. Third, firms pay a cost this period for utilizing installed

capital that is increasing in the fraction of installed capital used.

We will allow firms to utilize capital beyond installed capital this period, so that the

utilization rate is bigger than 100%; firms are essentially able, albeit at great cost, to

”overwork” the machines installed in the factory last period as much as the care to. For the

cost functions and parameterizations we consider, the cost of utilizing capital keeps firms

from overworking installed capital in any period.

Specifically, call installed capital by the producer of intermediate input i in period t

kit, and the actual capital used in period t k̃it, so that k̃it ≤ kit. Then the producer of

intermediate input i has a production function given by

yit = k̃αitl
1−α
it (2)

Installed capital is rented at the end of period t − 1 at the interest rate Rt, but pro-

ducers do not repay households until the end of period t, as in the standard case. Capital

depreciates by the rate δ after it is used, and firms maintain ownership of the undepreciated

capital. Capital utilization comes at a cost given by the function c
(
k̃, k
)

. Thus, each firm

i’s profit in period t is given by

πit = pityit − wtlit −Rtkit − c
(
k̃it, kit

)
+ (1− δ)kit (3)

We will assume that the capital utilization cost function is quadratic in the utilization

rate:

c
(
k̃, k
)

= χ

(
k̃

k

)2

k (4)

Firm i maximizes the sum of per period profits, but since the only buyer of variety i is
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the final goods producer, the firm cannot supply any more than ydit. The firm’s maximization

problem is given by

max
(pit,kit)∞t=0

Et

∞∑
i=1

Λt,t+i max
(k̃it,lit)

πit

s.t. yit ≤ ydit

We solve the firm’s problem in three steps. First, find the firm’s choice of (k̃it, lit) that

minimizes its cost of supplying yit given (pit, kit, At, bit), where At and bit are (random)

aggregate and variety-specific demand shocks. Second, find the firm’s choice of yit that

maximizes its profits given (pit, kit, At, bit). Third, find the choices of (pit, kit) that maximize

the firm’s expected profits, where expectations are taken over the random shocks (At, bit).

3.2.1 Firm Costs and Factor Demands

The firm chooses how much labor and capital to use in period t to minimize its pe-

riod t costs.3 The rental costs of installed capital are sunk at the time t. Thus, given

(pit, kit, wt, Rt, bit, At) and a desired level of output y, the firm chooses (k̃it, lit) to minimize

min
(k̃it,lit)

wtlit + χ

(
k̃2it
kit

)
s.t. k̃αitl

1−α
it ≥ y

The solution to this problem is given by

k̃it = y
1

2−α
it

(
wt
2χ

α

1− α

) 1−α
2−α

k
1−α
2−α
it

lit = y
1

1−α k̃
− α

1−α
it

With these factor demands, we can also find the firm’s cost function:

3Minimizing period t costs minimizes the firm’s total costs, since there adjusting these inputs have no
effect on costs in other periods.
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C (y) = w
2−2α
2−α
t χ

α
2−αk

− α
2−α

it

(
2− α
2− 2α

)(
2− 2α

α

) α
2−α

y
2

2−α

3.2.2 Firm Supply

Using the cost function obtained above, we can state the firm’s profit maximization problem

and obtain the optimal level of output yit. As the only buyer of variety i is the final goods

producer, the firm cannot supply any more than ydit. The firm chooses yit to maximize4

max
yit

pityit − C (yit)

s.t. yit ≤ ydit

We can now write the solution to the above profit maximization problem. Given

(pit, kit, bit, At),

yit =


ydit if Atbit ≤ bit

yCit else

where

yCit =
α

2χ(1− α)
(1− α)

2−α
α p

2−α
α

it w
− 2−2α

α
t kit

bit =

(
P 1−σ
t pσit
It

)
yCit

The cutoff bit gives the lowest level of demand shock that ensures that the constraint

yit ≤ ydit does not bind. For all Atbit > bit, the marginal cost of supplying ydit exceeds the

variety-specific price pit, and therefore the firm would earn higher profits by only supplying

yCit . This level of output acts as an endogenously determined limit on output (and therefore

capital utilization); though this limit can differ across firms in the general model, in the

solution we consider, it will be the same for all firms.

4The firm’s profit function should also include the cost of repaying capital to the household, rented last
period. Because this cost is sunk in period t, however, we ignore that cost in solving the period t output
decision.
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3.2.3 Firm Expected Profit

With the firm’s supply function in hand, we can write down the state-by-state profit func-

tion, along with the expected profits the firm will earn given a choice of (pit, kit) and

information about previous period random shocks (At−1, (bi,t−1)i).

After uncertainty is realized, profits (less capital rental costs) are given by

πnit(pit, kit, bit, At) =


pity

d
it − C

(
ydit
)

if Atbit ≤ bit

pity
C
it − C

(
yCit
)

else

Thus, the firm chooses pit and kit to solve

max
pit,kit

Et−1πit(pit, kit)

where the profit agents expect to receive in period t, looking from the end of period

t− 1, is

Et−1πit(pit, kit) =

∫ ∫ bit
At

0

[
pity

d
it − C

(
ydit

)]
pb(x)dx+

∫ ∞
bit
At

[
pity

C
it − C

(
yCit
)]
pb(x)dx

 dFA

3.3 Solution

We begin by putting structure on the random shocks bit and At. The distribution of the

random shock At follows an AR(1) process with normal error, while the distribution of the

idiosyncratic shock bit follows an AR(1) process with lognormal error:

bit = ρbbi,t−1 + εbt

ln(At) = ρAln(At−1) + εAt

εbt ∼
d
lnN (µb, σb)

εAt ∼
d
N (µA, σA)
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In the estimation and simulation that follow, we make two assumptions on the structure

of the demand shocks At and bit:

• ρb = 0 (aggregate errors are normal, idiosyncratic errors are lognormal)

• µb = −σ2
b
2 (normalize mean of shock to 1)

We solve the full set of equilibrium equations under the above assumptions in the ap-

pendix. Importantly, the iid assumption implies that the one-period ahead prices and

installed capital choices pit, kit, and bit are identical across firms in every period. (We’ll

interchangeably call these common choices pt and kt.) In turn, this implies that the endoge-

nous capacity constraint, yCit , and the corresponding demand shock cutoff bit, are identical

for all firms.

Now consider the effect of an increase in the aggregate shock At. First, the cutoff

bt doesn’t depend on the aggregate shock At. This implies that when we increase At,

essentially increasing the mean demand shock faced by any firm, we necessarily make more

firms capacity constrained.

We can now show that the model qualitatively matches the second two stylized facts

described above, though we do not lay out the proofs in detail here. The second fact states

that while measured TFP is procyclical, ”purified” TFP (controlling for factor utilization)

is less procyclical. The analog for both of these quantities is

Measured TFP:
yit

kαitl
1−α
it

=

(
k̃it
kit

)α
Purified TFP:

yit

k̃αitl
1−α
it

= 1

The first quantity is just a function of the capital utilization rate; using the aggregate

(mean) capital utilization rate from the appendix, it can be shown that the derivative of

the above function with respect to At is positive, and therefore increasing in At. Since we

use At to stand-in as the underlying source of business cycle fluctuations, we can say that

this quantity is procyclical. The second quantity, on the other hand, is totally acyclical.
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The third fact states that productivity dispersion increases in recessions. One way to

show this is to show that the coefficient of variation of measured TFP is an decreasing

function of At, where

CVTFP =
σTFP
µTFP

=

∫ (
k̃it
kit

)2α
di(∫ (

k̃it
kit

)α
di
)2 − 1

Again, though we do not show it here, the derivative of the above function with respect

to At is negative, and therefore decreasing in At.

4 Estimation

In the previous section, we showed that the model qualitatively implies a connection be-

tween capacity utilization and business cycle asymmetry. We now want to investigate to

which extent the capacity and capital utilization that we observe in the data is quanti-

tatively relevant, in that it implicity generates a significant portion of observed business

cycle asymmetry. We do this by first estimating model parameters only with the capacity

and capital utilization data, and then simulating the calibrated model. In this section,

we outline the data we use for the calibration, then outline our calibration procedure and

results.

4.1 Data

We use two aggregate time series on the manufacturing sector for the estimation: a mea-

sure of capacity utilization and another for capital utilization. All data are annual, and

we restrict our attention to the range 1974-2004 for which the capital utilization data is

available. We obtain aggregate capacity utilization across surveyed firms from FRED5 from

the Quarterly Survey of Plant Capacity Utilization conducted by US Census Bureau (2014).

The data surveys plant managers across several sectors of the economy. Managers are asked

to estimate the current market value of their production as a percentage of the value of pro-

duction that would occur if plants were operating at ”full capacity”, i.e. using all machinery

5Available at https://research.stlouisfed.org/fred2/series/MCUMFN
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in place, and as much labor/fuel/etc. as necessary to operate it.

We obtain capital utilization data from Gorodnichenko and Shapiro (2011)6, using their

preferred measure of plant hours per week. This measure uses information on labor hours

to estimate how intensively a plant’s machines are being used.

For the output measure we use data on real GDP from FRED7. We detrend the annual

production series using an HP(100) filter. Since plant hours per week and capacity utiliza-

tion are naturally bounded from both sides, it is not clear that they should be detrended.

We choose to HP-filter them with a high penalty parameter of 10, 000, in order to remove

very long-run trends. Finally, for output and workweek of capital, we use log deviations

from trend since the levels of these variables are not informative in the context of our model.

However, we continue to express capacity utilization in levels, since the level of its long-run

average of around 78% corresponds naturally to its equivalent in the model.

4.2 Estimation Procedure

We estimate four parameters: the cost parameter χ, the variance of the idiosyncratic de-

mand process σb, as well as persistence and variance of the aggregate demand shock ρA and

σA, respectively.

Given a set of parameters (χ, σb), and the mean wage wt, we use the model to calculate

mean capital utilization and capacity utilization. We then match this against the capital

utilization and capacity utilization from the data.

For capacity utilization we refer to full capacity as yCit , the maximum output an individ-

ual firm is willing to supply when demand is very high. While a more natural counterpart

to the survey question would be to compute output at some level of maximum capital

utilization, it is not entirely clear what this would mean in the context of the model.

We obtain our estimates using a standard Bayesian approach; the procedure (see Fernández-

Villaverde (2010)) is described in more detail in the appendix. The results are displayed

in table 2. The first three parameters are chosen as standard in the literature. For the

elasticity of substitution σ, the estimates in the literature range from around 4 to 10. For

now we choose a value on the higher end of estimates (giving firms less monopolistic power),

6Available at http://www-personal.umich.edu/ shapiro/data/SPC/
7Available at https://research.stlouisfed.org/fred2/series/IPMAN
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Table 2: Parameters

Parameter Value

Set outside estimation

Effective Capital Share α 0.33

Discount Factor β 0.96

Depreciation Rate δ 0.1

Elasticity of Substitution σ 10

Autocorr. Demand Shock ρb 0

Estimates

Utilization Cost χ 0.299

Std. Dev. Demand Shock σb 4.67

Autocorr. Agg Shock ρA 0.496

Std. Dev. Agg Shock σA 0.041

and note that it would be a good idea to include the parameter in future estimations. The

last parameter set outside the estimation is ρb, the persistence of the idiosyncratic demand

shock. In the context of the current model, this is without loss of generality: since firm

decisions are linear in expected demand, the distribution of E [bi] among firms does not

matter (nor are we using data identifying this distribution). The next four parameters rep-

resent the median values of their repective marginal posterior distribution; we give further

information about the posteriors in the appendix. While the variance of the idiosyncratic

demand shock may seem high, it is worth keeping in mind that the mean of the distribution

over bi is kept normalized to 1 (the lognormal distribution has parameters (−σ2b/2, σb)).

This means that for most firms the realization of their demand shock actually becomes

smaller as σb increases.

4.3 Results

We now assess to which extent the model reproduces the three stylized facts under the

calibrated parameters found in the previous section.

To do so, we use the the median estimates for χ and σb and compare the effects of sym-

metric aggregate demand shocks on output, aggregate (non-corrected) TFP, and dispersion

in average costs of production.
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Table 3: Quantitative Performance

Business Cycle Asymmetry

% ∆ from SS level 20% change in A -20% change in A

∆KU 0.87 -0.92

∆Y 1.12 -1.19

Increase Decrease

Shock needed for 1% Change in Y 18 -17

Shock needed for 5% Change in Y 93 -88

Skewness in Y

Model -0.37

Data: Rotemberg Filter -0.33

Productivity Dispersion

Dispersion Correlation with Y

Measured TFP Variance (model) -0.98

TFPR Variance (data) -0.5

Note: Performance of the model with respect to business cycle asymmetry and produc-
tivity dispersion. First, we list percent changes from steady state for production-weighted
aggregate capital utilization (KU), capacity utilization (YU), and output (Y). Next, we list
the shock to the aggregate shock A that would be needed to produce a 1% increase and
decrease in Y , respectively, and then again for a 10% change. Next, we list the skewness of
a simulated output series given the standard deviation for aggregate shock process A that
generates the observed standard deviation of output. Last, we list correlation of produc-
tivity dispersion with output, both for a measured TFP in the model and estimates from
Kehrig (2011).

The quantitative comparison results are given in table 3. We only report demand-

weighted aggregates, to reflect final output as the product of the final goods aggregator. We

first consider the impact of a change in the aggregate demand shock A, which corresponds

to a change in the mean of the idiosyncratic demand shocks bi. When A increases, more

firms have higher demand shocks, but by the same token, more firms are producing at the

endogenous output limit yCt .

We first shock the model with a shock equal to the calibrated standard deviation of

σAY = 0.2. Generally, even for a large change in A, the model delivers small changes in all

aggregate variables. The first three rows of the table show this: a 20% shock to aggregate
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demand relatively modest changes in output, capital utilization, and capacity utilization.

We believe these magnitudes have something to do with the large estimated σb - since the

distribution of demand shocks is already wide with A = 1, a small change in A doesn’t

affect the demand of many firms.

That said, when the model is calibrated to match the magnitude of observed changes

in output, it does exhibit asymmetry in output. Given the same percentage magnitude

aggregate shock, output decreases (as a percentage of its steady state value) by more than

it increases (1.19% decrease vs 1.12% increase). This difference is small, but as the next

rows show, it does have significant implications for the frequency of large busts versus large

booms.

Under the calibration for the aggregate shock process At, we know the distribution of

possible aggregate shocks. We can use the calibrated parameters to simulate the model

for several demand shocks and calculate the implied skewness in aggregate output in the

model. We see skewness of output in the model is on the order of what we see in the

data; for example, the skewness in the filtered quarterly GDP data is a little less than the

skewness implied by the model.

The model also seems to predict more skewness at higher levels of volatility. In the

second two rows, we list the level of At necessary to induce a 1% increase and decrease in

GDP, and then a 5% increase and decrease in GDP. At the 1% level, the necessary aggregate

shocks are very close together in magnitude, only differing by a percentage point. At the 5%

level, the difference between the negative shocks increases to 5 percentage points. We take

this to imply that the utilization effects we capture in the model may be more pronounced

for large changes in output.

Finally, the model also predicts significantly higher TFP dispersion in busts. Using the

formula

T̃FP it =
yit

kαitl
1−α
it

(5)

We calculate the variance of T̃FP it for many draws of the aggregate shock with σA = 0.2.

We then calculate the correlation between the variance of TFP and output; we find it to
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almost perfectly negatively correlated. The corresponding estimate from Kehrig (2011) is

much (unsurprisingly) significantly smaller, on the order of 0.5.

As shown above, the analog of ”purified” TFP will always be acyclical in this model,

while simple TFP will be procyclical, so we cannot meaningfully add to our model’s perfor-

mance on this measure in this quantitative exercise. We can speak to the model’s general

performance, however, by comparing the implied correlation between output growth and

simple TFP.

5 Conclusion

We present a model of demand shocks which can qualitatively explain three business cycle

observations: Deep recessions, procyclicality of the Solow residual while purified TFP is

acyclical, and countercyclical dispersion in firms’ Solow residuals and average costs. The

main assumption is that firms set prices before the level of their demand is realized. We

then demonstrate how to estimate the model using time-series data on the level of capacity

utilization as well as the comovement of output, capacity utilization and capital utilization.

Further research is needed to derive the general equilibrium solution to the model as well

as adapting the model to allow for a more informed estimation using more data.
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A Solution

In this section, we list the full set of equilibrium equations under the assumptions that

idiosyncratic demand shocks bit are iid, and the shock process has mean 1, so that

bit = εbt

εbt ∼
d
lnN (−

σ2b
2
, σb)

The first assumption implies that the one-period ahead prices and installed capital

choices pit and kit are identical across firms in every period. We’ll interchangeably call

these common choices pt and kt. In turn, this implies that several quantities in the model

also become identical across firms, e.g. bit = bt ∀i. We present only the simplified equations

below.

Since this is a partial equilibrium model, both wages wt and rental rates for capital Rt

are treated as given.
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Final Goods Firms

Yt =

([∫ bt

0
(Atbit)

1
σ ydit

σ−1
σ di

]) σ
σ−1

(6)

Yt = It (7)

Pt = (

∫ ∞
0

(Atbit)
1−σ
σ p1−σit di)

1
1−σ = A

1
σ
t pt (8)

It =

∫ ∞
0

(Atbit)
1
σ pity

d
itdi = pt

∫ ∞
0

(Atbit)
1
σ yditdi (9)

ydit =
It
Pt

(
Pt
pit

)σ
Atbit =

It
Pt
A2
t bit (10)

Intermediate Goods Firms

yCit = yCt = C1p
2−α
α

t w
− 2−2α

α
t kt (11)

bit = bt =
Pt
It
yCt (12)

k̃it = C
1−α
2−α
0 k

1−α
2−α
t−1 w

1−α
2−α
t y

1
2−α
it (13)

lit = y
1

1−α
it k̃

− α
1−α

it (14)

C(y) = C2
w

2−2α
2−α
t

k
α

2−α
t

y
2

2−α (15)

C0 =
α

2χ(1− α)
(16)

C1 =
α

2χ(1− α)
(1− α)

2−α
α (17)

C2 =

(
2− α
2− 2α

)(
α

2χ(1− α)

) −α
2−α

(18)

C3 =
2C

α
2−α
1 − 2C2

αC
α

2−α
1

(19)

h1t(pit, kit) =

∫ (∫ bt

0

[
pity

d
it − C

(
ydit

)]
pb(x)dx

)
dFA (20)

h2t(pit, kit) =

∫ (∫ ∞
bt

[
pity

C
it − C

(
yCit
)]
pb(x)dx

)
dFA (21)

ht = Et−1πit(pit, kit) = h1t + h2t (22)
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The FOC for pit is given by

∂ht
∂pit

=
∂h1t
∂pit

+
∂h2t
∂pit

= 0

And for kt
∂ht
∂kit

=
∂h1t
∂kit

+
∂h2t
∂kit

= Rt − (1− δ)

Exogenous Shock Processes

bit ∼
d
lnN (−

σ2b
2
, σb) (23)

ln(At) = ρAln(At−1) + εAt (24)

εAt ∼
d
N (0, σA) (25)

B Estimation Details

B.1 Moment Conditions

The aggregate (mean) capital utilization rate can be found with

∫
k̃it
kt
di =

∫
(C0wt)

1−α
2−α

k
1−α
2−α
t

y
1

2−α
it di (26)

=
(C0wt)

1−α
2−α

k
1−α
2−α
t

(
AtIt
Pt

) 1
2−α

∫ bt
At

0
x

1
2−α pb(x)dx

+ C
1−α
2−α
0 C

1
2−α
1 w

− 1−α
α

t p
1
α
t

(∫ ∞
bt
At

pb(x)dx

)
(27)

We can express the aggregate (mean) capacity utilization rate by

∫
yit

yCit
di =

 A2
t It

A
1
σ
t p

2
α
t kt

w
2−2α
α

t

∫ bt
At

0
xpb(x)dx

+ 1 (28)

In the estimation, we assume that wages wt are given. Then as long as pit and kit

are only functions of the parameters (χ, σb) and the aggregate expenditure It = Yt. The

aggregate expenditure is itself only a function of At. Then the above capital utilization and
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capacity utilization rates are also only functions of (χ, σb) and, through its effect on It, also

a function of At. We can write pit and kit as functions of (χ, σb) using the FOCs from every

firm’s (common) one period ahead decisions.

To get the FOCs for the firm’s one period ahead decisions, first take the partial deriva-

tives of the components of the expected profit function:

∂h1t
∂pit

=

(∫ bt

0

(
ydit + (pit − C

′
(ydit))

(
∂ydit
∂pit

))
pb(x)dx

)
+
[
pitydit − C

(
ydit

)]
pb(bt)

∂bt
∂pit

∂h2t
∂pit

=

(
yCit + (pit − C

′
(yCit ))

(
∂yCit
∂pit

))(∫ ∞
bit

pb(x)dx

)
−
[
pity

C
it − C

(
yCit
)]
pb(bit)

∂bt
∂pit

∂h1t
∂kit

=

(
α

(2− α)kit

∫ bt

0
C(ydit)pb(x)dx

)
+
[
ptydit − C

(
ydit

)]
pb(bt)

∂bt
∂kt

∂h2t
∂kit

=

(
(pt − C

′
(yCt ))

∂yCt
∂kt

+
α

(2− α)kit
C(yCt )

)(∫ ∞
bt

pb(x)dx

)
−
[
pty

C
t − C

(
yCt
)]
pb(bt)

∂bt
∂kt

where ydit = ydit(bt).

Expanding further,

∂ht
∂pit

= (1− σ)
It
Pt

+ σ(yCt )
−α
2−α

(
ItA

2
t

Pt

) 2
2−α

∫ bt
At

0
x

2
2−α pb(x)dx

+ yCt

(∫ ∞
bt
At

pb(x)dx

)
(29)

∂ht
∂kit

=
α

2− α
C2

(
ItA

2
t

Pt

w1−α
t

kit

) 2
2−α

∫ bt
At

0
x

2
2−α pb(x)dx

+

(
αyCt

pt−1kt−1

)(∫ ∞
bt
At

pb(x)dx

)
(30)

We can now use equations (27) and (28) together with (29) and (30) to obtain moment

conditions.
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B.2 Estimation Procedure

Call the two model moments f1t(χ, σb|At) =
∫
k̃it
kt
di, f2t(χ, σb|At) =

∫ yit
yCit
di, and their

observed analogs m1t and m2t. Through their dependence on output, these functions also

depend on the aggregate shocks At. Roughly, then, the estimation procedure proceeds in

two steps: first, given a set of possible parameters (χ̂, σ̂b), calculate the model moments

for the entire distribution of possible shocks At. Second, calculate the expected difference

between the model and corresponding data moments, given the prior distribution of shocks

At; if the difference is large, adjust the prior distribution, and repeat until the difference is

minimized. Third, in an outer step, repeat this calculation for all periods t. Fourth, calculate

a likelihood of observing the entire sequence of data moments, given your minimized shock

distribution in each period. Last, repeat the entire process for other possible parameter sets

(χ̂, σ̂b) until the likelihood is minimized.

In solving the inner problem of adjusting the probability distribution of shocks At, we

make use of the fact that the At has a parametric prior distribution with mean 0, and so

reduce the problem of finding the best distribution to one of finding the best σA. In order

to force the algorithm to search over many parameter sets, we assume that the observations

m1t and m2t are observed with measurement error. We employ a Bayesian particle filter to

solve the inner problem and generate a likelihood function. We then minimize the likelihood

function using the Metropolis-Hastings algorithm; both of these are described in more detail

in Fernandez-Villaverde (2009).

B.3 Results

We assume the following prior distributions on each of the estimated parameters:

Table 4: Assumed Priors

Parameter Prior

Utilization Cost χ lnN (0, 1)

Std. Dev. Demand Shock σb lnN (−2, 1)

Autocorr. Agg Shock ρA Uniform(0, 1)

Std. Dev. Agg Shock σA lnN (−2, 1)
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Figure 2: Posterior Distributions: Parameter Estimates

We list our parameter estimates in the main text. Here, we plot the approximate

posterior distribution for each of the four parameters of interest.
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